DESIGNING A 332' CROSSING TOWER Using PLS-TOWER 11.16

By: George Watson, Consulting Engineer

CenterPoint Energy
formerly Reliant Energy
formerly Houston Industries Inc.
formerly Houston Lighting \& Power

Small Service Area (2.5\%) Big Electrical Load (25\%)

Texas Peak Load for 2010 was 66,000mw

CNP Peak Load for 2010 was 16,100mw
(25\% of Texas Total)

233 Substations 3800 Miles of T-Lines

Typical Houston house with 11 Car Garage

61,000 Square Feet on an 11 Acre Lot

Ancient Tower Design Tools

CenterPoint. Energy

Early Stress Analysis

CenterPoint. Energy

-Graphical Method of Joints
-Many Assumptions to Allow Analysis
-Multiple Load Cases
Very Time Consuming

Calculator from $1973(\$ 2,000)$

1976 Tower Design on CDC 6600
 CenterPoint. Energy

Tower hit by a barge of scrap

PLS-TOWER Face Designation

The windward transverse face is that on which a positive transverse wind (in the positive Y-direction) would blow.

Adjust Drag Factors

CenterPoint. Energy

Sections

Model Check Report
No errors or relevant warnings detected.
Adjust Drag Factors

| Section
 Label | Section
 Color | Joint
 Defining
 Section
 Bottom | Dead
 Load
 Adjust.
 Factor | Transverse
 Drag x Area
 Factor
 For Face | Longitudinal
 Drag x Area
 Factor
 For Face | Transverse
 Area Factor
 (CD From
 Code) | Longitudinal
 Area Factor
 (CD From
 Code) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Cage | | 11 P | 1.310 | 3.200 | 3.200 | 1.000 | 1.000 |
| 2 | Body3 | | 145 | 1.310 | 3.200 | 3.636 | 1.000 | 1.136 |
| 3 | Body2 | | 175 | 1.310 | 3.200 | 4.114 | 1.000 | 1.286 |
| 4 | Body1 | | 22 P | 1.310 | 3.200 | 4.960 | 1.000 | 1.550 |
| 5 | | | | | | | | |

Start with a basic geometry

All Redundants must be accounted for in the Drag Area Calculations, either by adding to the model or adjusting the factors

Tower Base is 27 ' $\times 18^{\prime}$

Start with a basic geometry

Redundants added and Leg Members split

Crossing Diagonals joint added

Tower Base is 27 ' $\times 18^{\prime}$

Start with a basic geometry

The 7 Joints shown are the Primary Joints

Start with a basic geometry

CenterPoint. Energy

The Crossing Diagonal Joints must be re-calculated if the leg slope is changed

Add Some Extensions

CenterPoint. Energy

Add a 40 foot Extension

Add Some Extensions

CenterPoint. Energy

Add a 20 foot
Extension

Add Some Extensions

Add a 32 foot
Extension

Add Some Extensions

CenterPoint. Energy

Add 3 more 32 foot
Extensions

Add Some Extensions

Add another 32 foot
Extension

Add Some Extensions

Add a 48 foot Extension

The Final Starting Geometry

332'-0 Tall 109.6' Wide

73.1' Deep

7 Primary Joints
214 Secondary Joints
384 Member Groups

Evaluate Different Base Spreads

CenterPoint. Energy

Change One Joint

Make the Base Wider

332'-0 Tall
124.4' Wide
92.8' Deep

Make the Base Narrower

CenterPoint.
 Energy

332'-0 Tall

75.1' Wide

53.3' Deep

Use PLS-CADD Lite

CenterPoint. Energy

Max Line Angle

Max Span

Min Line Angle
Min Span

Generate Design Load Cases

Max Line Angle

Max Span

Min Line Angle

Min Span

Structure Loads Criteria					
	Description	Weather case	Cable condition	Wind Direction	Bisector Wind Dir (deg)
132	STRINGING 2-1	Construction	Initial RS	$\mathrm{NA}+$	NA
133	STRINGING 10-1	Construction	Initial RS	$\mathrm{Na}+$	NA
134	STRINGING 10-2	Construction	Initial RS	$\mathrm{NA}+$	NA
135	STRINGING 10-3	Construction	Initial RS	$\mathrm{NA}+$	NA
136	COLD STRINGING 1-1	Cold Stringing	Initial RS	$\mathrm{NA}+$	NA
137	COLD STRINGING 9-1	Cold Stringing	Initial RS	$\mathrm{NA}+$	NA
138	COLD STRINGING 9-2	Cold Stringing	Initial RS	$\mathrm{NA}+$	NA
139	COLD STRINGING 9-3	Cold Stringing	Initial RS	$\mathrm{NA}+$	NA
140	COLD STRINGING 2-1	Cold Stringing	Initial RS	$\mathrm{Na}+$	NA
141	COLD STRINGING 10-1	Cold Stringing	Initial RS	$\mathrm{Na}+$	NA
142	COLD STRINGING 10-2	Cold Stringing	Initial RS	$\mathrm{Na}+$	NA
143	COLD STRINGING 10-3	Cold Stringing	Initial RS	$\mathrm{NA}+$	NA
144			$>$		NA
145		$143 \text { LOa }$			NA
146		ases			NA
147					NA
148					NA
149	Onern_	O-merom	vonter		Na

New Tower Version 11.16

-Redundant Check and Design

- Included Angle Check
-Climbing Load Check and Design

Evaluate the Best Leg Slope

CenterPoint. Energy

The Crossing Diagonal Joints must be re-calculated if the leg slope is changed

Evaluate the Best Leg Slope

Evaluate the Best Leg Slope

Evaluate the Best Leg Slope

CenterPoint. Energy

Base Width

Crossing Tower Statistics

- Crossing Span is 1700^{\prime}
-Anchor Span is 1200'
-Line Angle is 20°
-Wind Speed is 120 MPH
-Wind on Structure accounts for 77% of Foundation Load

Observation

CenterPoint. Energy

In the days prior to PLS-CADD and Tower, these "What-If" permutations were not possible without massive manpower and many weeks or months of Engineering calculations.

CenterPoint. Energy

Questions?

