2017 PLS-CADD Advanced Training and User Group

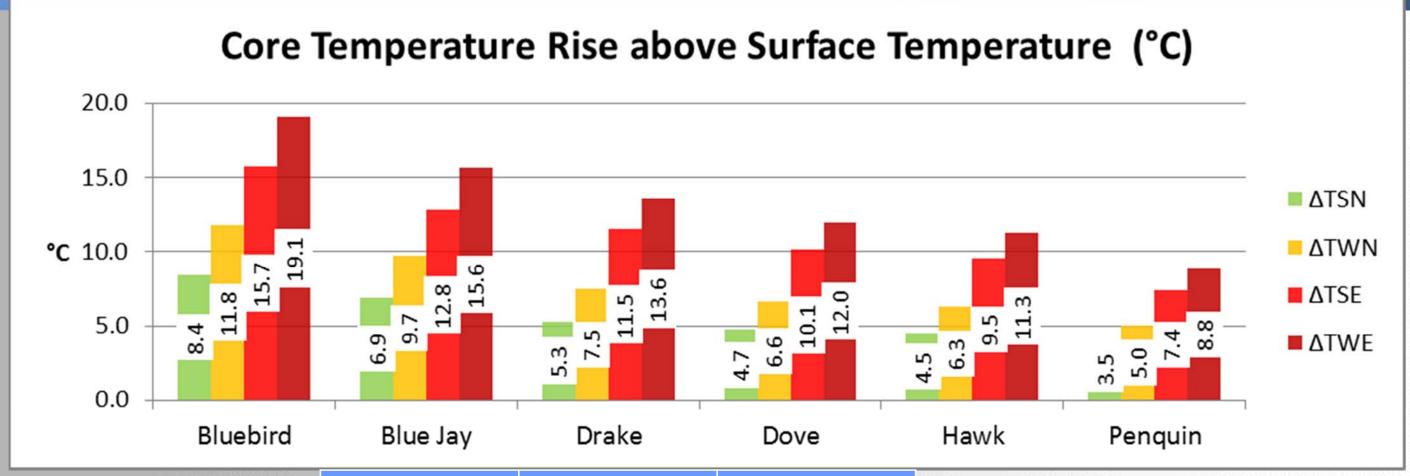
Radial Conductor Temperature
Impact on Ratings

by Bob Kluge

Introduction

- My objective
 - Show the relative impact of radial temperature on several common conductors
- The engineer (transmission owner) has three choices:
 - Use PLSCADD or their in-house program to calculate the correct rating using the correct surface temperature.
 - 2. Use rating adjustment based on the number of aluminum layers.
 - 3. Ignore the effects of radial temperature and assume conductor temp is homogeneous.

Background (USA)


- NERC FAC-008
 - Transmission Utilities must
 - Have published ratings
 - Operate to those ratings
 - Rating Methodology based (on at least one)
 - Equipment Manufacturer's
 - One or more Industry Standards (IEEE, CIGRE, etc.)
 - Practice verified by Testing, Performance, Engineering analysis

Slide 1: Thermal Dynamic FACT

Conductor Core is hotter than the surface.

- Greater sag based on warmer steel core
- Compute impact on rating
 - Sample calculation for ACSR only
 - Assumes rated temperature is above the knee-point.
- Increased annealing of ACSR is relatively insignificant.
 - Most of the aluminum is in the outer layer(s)
 - Steel does not anneal at these operating temperatures

Slide 2: Thermal Gradient

	Ambient	MOT*
ΔTS-Normal	90°F Summer	93°C (200°F)
ΔTW-Normal	32°F Winter	93°C (200°F)
ΔTS -Emergency	90°F Summer	150°C (300°F)
ΔTW-Emergency	32°F Winter	150°C (300°F)

* MOT = Conductor Max Operating Temperature

Slide 3: PLSCADD Conductor Sag/Tension

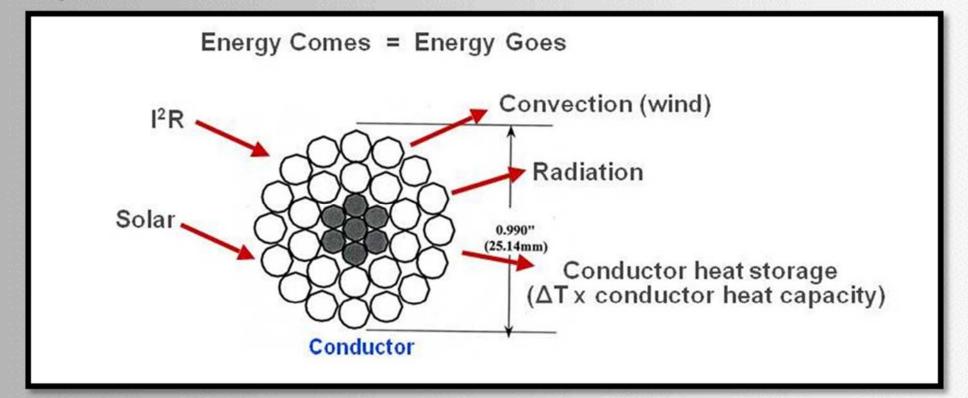
- PLSCADD plots sag based on the temperature of the metal strands supporting the conductor.
 - For ACSR at elevated temperatures,
 - Steel core supports the conductor
 - Sag is correct for temperature of the steel
 - Max temperature is correct for steel core

So the surface is Cooler

• Ratings are based on "Surface Temperature"

Slide 4: IEEE-738 Rating Calculations

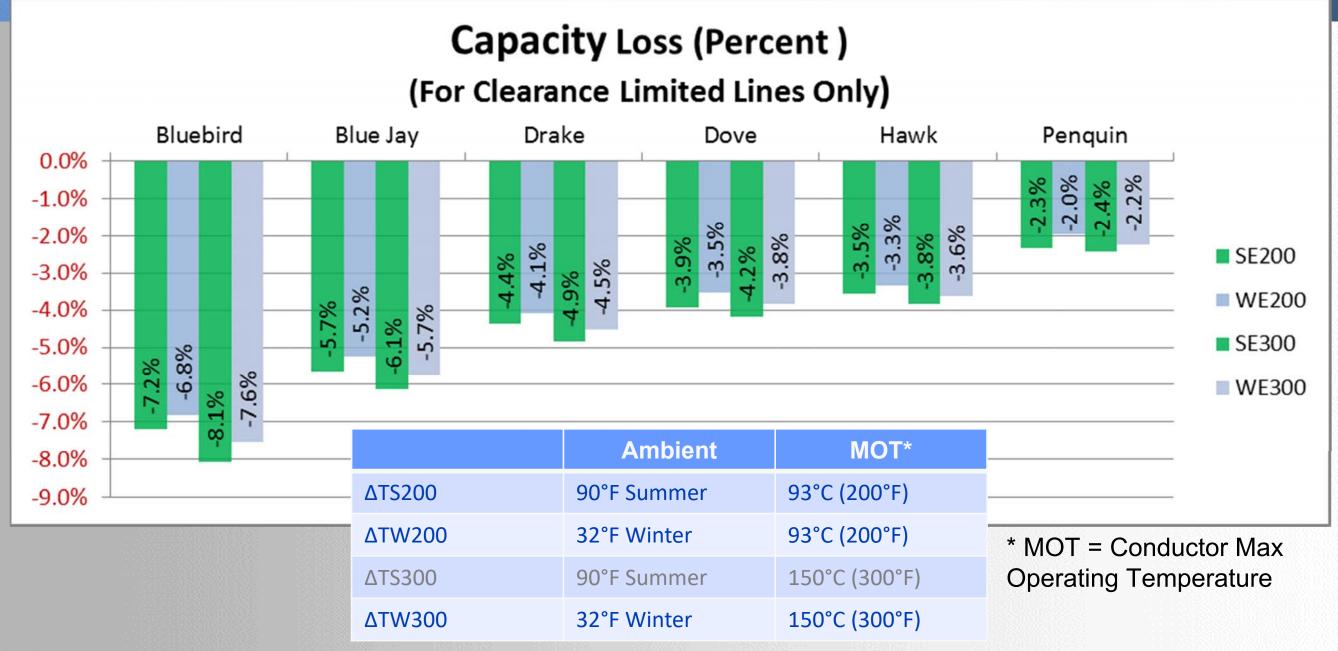
Heat balance computation at the surface


$$I^2R + Q_S = Q_R + G_C$$

I²R Resistive heating (the only internal factor)

Qs Solar heat input striking the surface

Q_R Radiation heat loss off the surface


Q_C Conductive to the surrounding

Slide 5: Ratings Options Considering Thermal Gradient

- 1. Get Surface Temperature from PLSCADD
 - Use surface temperature → Rating
 - IEEE-738
 - CIGRE 207
- 2. Use a Factor to Adjust Ratings
 - Percent decrease in rating
 - Varies primarily by number of aluminum layers, not wire size
 - Relatively constant regardless of max operating temperature (MOT)
 - Approximation appears acceptable because adjustment is small

Slide 6: Typical Ratings Adjustment Factors

Conclusion: Can We Ignore Impact Radial Conductor Temperature?

For lines limited by conductor annealing:

- Maybe, Is the additional annealing significant?
 - Most of the aluminum is in the outer layer(s) at/near surface temperature
 - Internal temperature rise is small—Minor increased annealing—Minimal affect on strength
 - Steel does not anneal at these low temperatures

For lines limited by clearance:

- No? Or might it depends on conductor size? MOT?
 - Greater impact on larger conductors with more layers of aluminum.

IEEE 1238-2012

"Effects of High-Temperature Operation on Conductors, Connectors, and Accessories"

Ticket to Ignore Thermal Gradient Except for Operation of Conductors > 150°C

IEEE 1238-2012

4.4 High-temperature effects on sags and tensions

4.4.2 Aluminum Compression:

If conductors are operated above the "off load temperature," the use of sag-tension programs which account for the additional sag due to aluminum compression should be employed.

4.4.2 Conductor Thermal Gradient:

- Most sag-tension modeling tools continue to assume a homogenous radial conductor temperature profile.
 - If the conductor is operating above knee point, sag is based on core temperatures.
- Above 150°C, there could be potential impacts on sag-tension due to the conductor core being substantially hotter than the conductor surface.
 - Above 150°C, the core may be substantially (as much as 25°C) hotter than the surface. (Based on limited research above 150°C)
 - Impacts would be less significant at lower temperatures.

Advanced Sag & Tension

NESC

Structural Analysis

Pole Analysis

IEC

CENELEC

Transmission

Materials Management

NERC Ratings

FAC 008/009

LiDAR Modeling

CSA

Distribution

Line

Optimization

Project Estimating

ASCE

Joint Use

Conclusions

PLS-POLE

GO95

Vegetation Management

1000+ Users in 100+ Countries

Line Ratings

Storm Hardening

Drafting

Madison, Wisconsin 53705, USA Phone: 608-238-2171 Fax: 608-238-9241 info@powline.com www.powline.com

ACTION

- Are you using PLSCADD option "IEEE-738-2012"?
- Should you?
 - Nothing is precise. How conservative are you?
 - Are your records current?
 - Recent as-built survey? LiDAR?
 - Clearance buffer doesn't really count.
 - How conservative are your assumptions underlying your Rating Methodology?
 - Ambient conditions
 - Maximum operating temperature of conductor, splices.
 - Operating practice

Summary

- Radial temperature gradient is real
 - Significant at high temperature—above knee point.
 - Impact on ratings may be expressed as a percentage of rating
 - Relative impact varies with different conductors (size, type...)
- The engineer (transmission owner) has three choices:
 - Use PLSCADD or their in-house program to calculate the correct rating using the correct surface temperature.
 - 2. Use a rating adjustment factor based on the number of aluminum layers.
 - 3. Ignore the effects of radial temperature and assume conductor temp is homogeneous.

IEEE-738-2012 Excerpts

$$T_{core} - T_{s} = \frac{I^{2} \cdot R(T_{avg})}{2\pi \cdot k_{th}} \cdot \left[\frac{1}{2} - \frac{D_{core}^{2}}{D_{o}^{2} - D_{core}^{2}} \cdot \left(\ln \frac{D_{o}}{D_{core}} \right) \right]$$

- K_{th} range = 4 to 0.5
- For ACSR with tension in aluminum strands, K_{th} ≈ 2 W/m-°C
- For ACSR w/o tension in aluminum strands, K_{th} ≈ 1 W/m-°C

IEEE-738-2012 Excerpts

Radial temperature difference depends on:

- a) Conductor strand shape (round or trapezoidal if under tension).
- b) Magnitude of the electrical current in aluminum layers.
- c) Electrical resistance, which increases with temperature.
- d) The number of layers of aluminum wires.
- e) The condition of aged conductor (i.e., oxidation and bird-caging).
- 1) The contact area and pressure between aluminum layers.

IEEE-738-2012 Excerpts

- Low current density
 - < 1/2 amp/kcmil → radial temperature difference may be neglected.
 </p>
- Higher current density, especially with 3-4 aluminum layers
 - radial temperature differences of 10 °C to 25 °C have been measured in laboratory tests
- Testing has been primarily with ACSR.
 - ACSS may have lower K_{th} values
- Should consider Radial Temperature Difference if
 - Gradient is found to exceed 10 °C
- May ignore for short duration loads on ACSR, e.g.
 - Fault current (< 60 sec); Transient loads (5 to 30 min)